Дифракция объектива


Что такое дифракция объектива? Давайте подробно разберем это понятие.

Когда фотографы говорят о дифракции объектива, они имеют в виду тот факт, что фотография становится менее резкой при малых значениях диафрагмы — f / 16, f / 22 и так далее. Когда вы сужаете диафрагму объектива до таких маленьких отверстий, самые мелкие детали на ваших фотографиях начнут размываться. Не зря этот эффект может взволновать начинающих фотографов. Однако, если вы понимаете, как дифракция влияет на ваши фотографии, вы можете принимать обоснованные решения и делать качественные фотографии. В этой статье мы подробно рассмотрим тему дифракции и поговорим о различных методах, которые можно использовать, чтобы избежать ее.

Эффект дифракции — это явление, когда ваша резкость уменьшается при уменьшении значений диафрагмы, как показано на изображении ниже.

дифракция объективаЧтобы увидеть различия в четкости, нажмите на изображение. Обратите особое внимание на рисунок цветных точек на лице женщины.

Причина, по которой это происходит, основана на принципах физики; короче говоря, когда диафрагма становится все меньше и меньше, световые волны при распространении все больше мешают друг другу. Это приводит к размытию мелких деталей ваших фотографий.

Однако это объяснение слишком простое, и оно может сбивать с толку начинающих фотографов. Что с точки зрения физики вызывает дифракцию? В какой момент дифракция начинает размывать ваши фотографии? Есть ли что-нибудь, что вы можете сделать, чтобы предотвратить дифракцию? Дорогие линзы лучше справляются с дифракцией? Ответы на все эти вопросы подробно приведены ниже.

1. Что такое дифракция?

При объяснении дифракции трудно избежать ссылок на оптическую физику. Большинство фотографов не интересуются физикой, но невозможно говорить о дифракции, не описав, как она работает на фундаментальном уровне. Тем не менее, этот раздел о физике; мы рекомендуем прочитать его, так как он обеспечит более прочную основу для понимания дифракции.

По своей сути, дифракция — это концепция, согласно которой волны, в том числе световые, могут мешать друг другу. Фактически, каждый раз, когда волны проходят через отверстие, они будут мешать друг другу. Чтобы это было легко визуализировать, рассмотрим волны воды. Если вы уроните камень в совершенно неподвижное озеро, образуется рябь из маленьких волн. Эти волны распространяются в концентрических кругах, как показано на рисунке ниже:

дифракция объектива

Что произойдет, если вы создадите барьер, чтобы заблокировать путь этих волн? Проще говоря, вы  остановите их движение. 

дифракция объективаВолны на левой стороне, конечно, будут продолжать колебаться; за барьером справа волн не будет

На следующем этапе, вы вырезаете отверстие в барьере, чтобы вода могла пройти. Теперь, будут ли проходить волны?

дифракция объективаВолны проходят, но появляется несколько дополнительных волн, которые формируются помимо основной волны:

дифракция объективаОбратите внимание, что эта диаграмма немного упрощена. В реальном мире вы бы увидели точный характер волн только с правой стороны, если бы входящие волны были абсолютно параллельны.

Эти дополнительные волны являются артефактами от изгиба волны по углам. Они возникают потому, что два угла действуют, по сути, как отдельные источники волн, которые могут сталкиваться друг с другом. В определенных зонах столкновения волны нейтрализуют друг друга (разрушительные помехи). Вот почему некоторые области диаграммы выглядят совершенно неподвижно. В других местах,  волны совмещаются (конструктивное вмешательство), что заставляет появляться дополнительные волны по сторонам.

Для наглядности предположим, что вдоль правого края диаграммы расположен датчик. Этот датчик измеряет интенсивность волн в данной точке, которая увеличивается с амплитудой волны. График интенсивности показан ниже:

дифракция объективаОчевидно, что центральная волна является наиболее значимой. Волны по бокам все еще присутствуют , но они не имеют такой интенсивности, как в центре. Это означает, что центральная волна наиболее важна в фотографии, что мы рассмотрим чуть позже. Сейчас же давайте посмотрим, что происходит с большим или меньшим отверстием в барьере. Обратите внимание, что изображения ниже были упрощены, и в них включена только центральная волновая картина:

дифракция объектива

Основное различие между этими двумя изображениями состоит в том, что меньшее отверстие приводит к большему распространению волн по радиусу, в то время как большое отверстие вызывает гораздо меньшее распространение.

Наконец, обратите внимание, что «маленькое» отверстие является относительным. На самом деле, отверстие вызывает дифракцию только тогда, когда оно имеет размеры, равные длине волны, проходящей через него. Вот почему свет, имеющий небольшую длину волны, не будет значительно рассеиваться, если он проходит через отверстие шириной в три метра.

Поздравляем! Теперь вы понимаете физику дифракции. По своей сути, небольшое отверстие заставляет волны изгибаться и мешать друг другу; это, в свою очередь, распространяет их.

2. Дифракция в фотографии

Очевидно, что дифракция является важной концепцией в физике. Фактически, аналогичный эксперимент (с двумя прорезями, а не с одной) сыграл главную роль в доказательстве того, что свет может вести себя как волна — одно из самых важных открытий в научной истории. Но как это влияет на вашу повседневную фотографию?

дифракция объективаВсе сводится к отверстию объектива. Как показано на фотографии выше, лепестки диафрагмы в объективе действуют как одна щель, пропускающая волны света. Образец интенсивности света  вы можете увидеть ниже:

дифракция объективаЭто выглядит знакомо! Это потому, что свет, подобно воде, распространяется волнами.

Это двумерный график. В реальном мире точка света проецируется в трех измерениях. Итак, более точный график представлен ниже:

Этот трехмерный рисунок показывает, как свет проходит через отверстие в объективе камеры. А когда проецируется на датчик вашей камеры, это выглядит так:

дифракция объектива

Рисунок выше показывает то, что известно как диск Эйри . Это, по сути, отражение дифракционной картины, попадающей на сенсор вашей камеры. Центральная область является самой яркой, и она оказывает наибольшее влияние на ваши фотографии.

Давайте разберемся, почему этот диск Эйри может вызвать размытие фотографии. Мы уже знаем, что небольшое отверстие заставляет волны распространяться сильнее. Это означает, что при малых значениях диафрагмы диск Эйри становится намного больше. Если представить диск Эйри на сенсоре вашей камеры, получится изображение, похожее на это, где сетка представляет количество пикселей вашего сенсора:

дифракция объективаОбращаем внимание, что в действительности диск Эйри становится тусклее, когда диафрагма сужается; для упрощения схемы этот эффект здесь не показан

Теперь представьте себе, что сцена состоит из бесчисленных крошечных источников света. Каждая точка света проходит через диафрагму вашего объектива; в результате каждая часть вашей фотографии проецируется на сенсор как диск Airy. Они, как показано выше, становятся размытыми при малых значениях диафрагмы, и их взаимодействие между собой усиливается, создавая больше помех. Это причина, по которой вы видите дифракцию!

3. Связь дифракции с количеством пикселей матрицы

Вышеприведенное сравнение, показывающее, как диск Эри поражает пиксели вашего датчика, может вызвать вопрос: если бы пикселей было больше, не было бы меньше вероятности, что диск Эйри будет создавать дифракцию?

На самом деле это абсолютно верно! На высокопиксельных камерах дифракция выше, чем у камер с меньшим количеством пикселей при той же фиафрагме. Вы можете дойти до f/11 на 12-мегапиксельном Nikon D700, прежде чем заметить дифракцию, в то время как 36-мегапиксельная D800 будет показывать видимую дифракцию при любой диафрагме, меньше f/5.6. Эти цифры относительны. Я рекомендую протестировать вашу собственную камеру, чтобы увидеть, когда дифракция начинает становиться заметной (и, что более важно, когда она начинает становиться нежелательной).

Тем не менее, это не проблема для матриц высокого разрешения. Фактически, если все ваши настройки одинаковы, матрица с высоким разрешением всегда будет захватывать больше деталей, чем матрица с низким разрешением того же размера. Больше пикселей никогда неприведет к снижению детализации, даже при малейшей из диафрагм. Это означает, что если вы печатаете ваши фотографии в одном размере, фотография Nikon D800 всегда будет иметь больше деталей, чем фотография Nikon D700, при прочих равных условиях.

Тем не менее, если вы покупаете Nikon D800, есть вероятность, что вы собираетесь печатать большими форматами. Если это так, дифракция — это большая проблема для D800 , чем для камеры с матрицей низкого разрешения! Чтобы получить максимально возможную резкость от D800, вам следует начинать беспокоиться, когда ваша диафрагма меньше чем f/8. Опять же, я рекомендую проверить точные параметры вашей камеры самостоятельно.

дифракция объективаNIKON D800E + 105 мм f / 2,8 @ 105 мм, ISO 100, 1/3, f / 7,1

4. Маленькие и большие датчики

Часто говорят, что камеры с датчиком кадрирования (т.е. кроп-камеры) показывают дифракцию больше, чем полнокадровые камеры (FX Nikon). Это миф или правда?

Давайте начнем с того, что мы знаем. При заданной диафрагме на объективе диск Эйри всегда будет иметь одинаковый физический размер. Неважно, какой датчик вы используете; это свойство физики, которое зависит только от самой диафрагмы. Например, независимо от того, установил ли я объектив 50 мм f / 1,8 на полнокадровую камеру D750 или на кроп-камеру D3300, размер проекции диска Эйри будет одинаковым (при условии, что диафрагма будет одинаковой).

Так где же путаница? Проблема заключается в том, что тот же диск Эйри занимает больший процент площади матрицы с кроп-фактором, чем матрицы полнокадровой камеры. Посмотрите на пример ниже:

дифракция объективаФактически, при одинаковом размере печати полнокадровая камера будет демонстрировать большую дифракцию, чем кроп-камера. Это связано с тем, что датчик полнокадровой камеры по сути является увеличенной версией датчика с кроп-фактором; другими словами, он увеличивает все на вашей фотографии — включая дифракцию — точно так же, как увеличение при редактировании, размывая изображение по мере увеличения.

Величина дополнительной дифракции будет такая же, как ваш кроп-фактор. Таким образом, для 1,5-кратной камеры с датчиком кадрирования умножьте диафрагму на 1,5, чтобы увидеть эквивалентную дифракцию на полнокадровой камере. Например, диск Эйри при f 11 на кроп-камере занимает примерно такой же процент вашего сенсора, что и диск Эйри при f/16 на полнокадровой камере.

Конечно, если вы используете кроп-камеру, вы не можете печатать такие большие снимки, как с полного кадра. Поэтому для многих фотографов практической разницы нет; меньшие форматы печати с камеры кроп помогают избежать дополнительной дифракции. Если вы печатаете фотографии больших размеров с помощью полнокадровой камеры, имейте в виду, что дифракция будет более значимой при равной диафрагме.

дифракция объективаNIKON D7000 + 24 мм f / 1,4 @ 24 мм, ISO 100, 1/250, f / 5,6

5 Дифракция и глубина резкости

Дифракция уменьшает резкость фотографии при малых диафрагмах. Тем не менее, в то же время небольшие диафрагмы увеличивают глубину резкости на фотографии. Это не противоречие, хотя поначалу это может сбить с толку. Посмотрите, например, на сравнение ниже:

дифракция объективаКак вы можете увидеть, фотография при f/22 имеет гораздо больше четкости в пределах глубины резкости. Если я хочу, чтобы весь этот объект был резким, фото при  f/22 намного лучше, чем фотография при f/5.6. Однако давайте посмотрим на точку фокусировки более внимательно:

дифракция объективаКак видите, фото при f/5.6 значительно четче. 

Это, конечно, не означает, что вы должны снимать каждую фотографию при f/5.6. Если вам нужна большая глубина резкости, не стесняйтесь использовать меньшие диафрагмы.

6. Выбор самой резкой диафрагмы

На каждом значении диафрагмы объектива всегда присутствует дифракция. Это физика; свет всегда должен преломляться через отверстие, даже если оно очень большое. Однако при больших значениях диафрагмы, таких как f/2.8 или f/4, диск Эйри поражает намного меньше пикселей на вашей фотографии. Это означает, что дифракцию практически невозможно увидеть при таких больших отверстиях.

Однако это не означает, что большие диафрагмы являются самыми резкими на данном объективе. Как вы, вероятно, знаете, линза имеет тенденцию к максимальной остроте, когда диафрагма слегка прикрыта. Например, мой объектив 20 мм f/1.8 самый резкий на f/4. 

Итак, почему пик резкости на диафрагме f/4, а не f/1.8? Это немного выходит за рамки этой статьи, но суть в том, что при больших значениях диафрагмы больше света проходит через края объектива. Так как центр линзы является наиболее скорректированной областью, это снижает резкость фотографии (и увеличивает ее сферическую аберрацию ). Меньшая диафрагма фактически блокирует свет, который прошел через края объектива, что улучшает четкость фотографии.

Сферическая абберация — явление, при котором параллельные световые лучи входящего света не сходятся в одной и той же точке после прохождения через линзу. Из-за этого сферическая аберрация может повлиять на разрешение и четкость, затрудняя получение четких изображений. Вот иллюстрация, которая показывает сферическую аберрацию:

Сферическая аберрация наиболее выражена, когда диафрагма хрусталика широко открыта (максимальная диафрагма). Остановка объектива даже на одну остановку значительно снижает сферическую аберрацию, потому что лепестки диафрагмы блокируют внешние края сферических линз.

Этот эффект, сбалансированный с уменьшением резкости от дифракции, является причиной того, что f / 4 дает наибольшую резкость на объективе, таком как 20mm f / 1.8.

Как определить, какая диафрагма самая резкая на объективе? Просто посмотрите на результаты самостоятельного тестирования своего объектива. Тем не менее, не стоит слишком сильно беспокоиться о съемке с «идеальной» диафрагмой. С одной стороны, даже эти результаты испытаний могут быть неоднозначными.

В то же время даже сильно низкие диафрагмы не делают фотографии слишком размытыми. Я сделал несколько больших распечаток фотографий, сделанных на f/16, и их качества более чем достаточно для моих нужд. Если вам нужна такая диафрагма (обычно для увеличения глубины резкости) не бойтесь ее использовать.

Если вам нужна максимально возможная глубина резкости на фотографии, как и у многих пейзажных фотографов, я рекомендую прочитать о гиперфокальном расстоянии. Между этими двумя свойствами фотографии много общего.

дифракция объективаNIKON D800E + 24 мм f / 1,4 @ 24 мм, ISO 100, 6/10, f / 16,0

7. Избегать дифракции

Теперь, когда вы понимаете дифракцию, как вы должны избегать ее на фотографиях? К сожалению, ответ заключается в том, что вы не можете ее избегать. Дифракция — это физическое явление. Неважно, насколько хорош ваш объектив; дифракция лишает резкости при малых значениях диафрагмы, несмотря ни на что.

Существует только один способ избежать дифракции на ваших фотографиях: использовать большую диафрагму. Если вам нужна абсолютно четкая фотография, это единственный способ избежать эффекта дифракции.

В то же время, если вы использовали маленькую диафрагму (скажем, f/16 или f/22), вы можете улучшить видимые детали фотографии, повысив четкость в постобработке . Это на самом деле не устраняет эффекты дифракции, но это простой способ улучшить фотографии, сделанные при небольших значениях диафрагмы.

Теоретически, можно исправить дифракцию с помощью процесса повышения резкости, известного как деконволюция. Этот тип повышения резкости наиболее эффективен, когда имеется идеальная модель рассматриваемого объектива, включая его точные оптические характеристики. По этой причине, общая резкость деконволюции не уменьшает эффекты дифракции в значительной степени. Однако известно, что НАСА использует такой метод для повышения четкости фотографий телескопа Хаббл.

Тем не менее, хотя вы можете повысить четкость фотографий при постобработке, лучший способ уменьшить дифракцию — просто использовать большую диафрагму.

дифракция объективаNIKON D7000 + 105 мм f / 2,8 @ 105 мм, ISO 100, 1/40, f / 6,3

8. Дополнительная информация

Большая часть следующей информации не повлияет на фактический вид ваших фотографий, но стоит рассмотреть некоторые из этих особых случаев.

Например, свет с большими длинами волн будет легче рассеиваться, чем свет с более короткими длинами волн; это означает, что красный свет (с длиной волны около 650 нм) приводит к тому, что диск Эйри больше, чем у синего света (около 475 нм) при той же диафрагме. Таким образом, теоретически, вы увидите чуть меньше размытия от дифракции, если вы работаете в чрезвычайно синем свете; на практике этот эффект настолько мал, что он не влияет на ваши фотографии.

Кроме того, в большинстве камер пиксели, которые объединяются для создания фотографии, не все обнаруживают одинаковые длины волн света. Для датчиков с массивом пикселей Байера (включая Nikon, Canon и Sony DSLR/беззеркальные камеры) число пикселей, воспринимающих зеленый цвет, в два раза больше количества красных и синих пикселей. Это означает, что представленная ранее пиксельная диаграмма является небольшим упрощением; однако это не меняет того факта, что размытие от дифракции увеличивается из-за размера диска Эйри.

Наконец, описание диска Эйри в этой статье немного проще, чем в реальном мире. Выше я показал это как серию концентрических колец; в действительности это произошло бы, только если бы отверстие было совершенно круглым. Большинство объективов имеют семь, восемь или девять лепестков диафрагмы, которые (даже изогнутые) не совсем круглые. Таким образом, «диск Эйри» становится «восьмиугольником Эйри». Однако практической разницы в проявлении дифракции на ваших фотографиях не будет.

Если у вас есть какие-либо вопросы о тонкостях дифракции, пожалуйста, не стесняйтесь задавать вопросы в разделе комментариев; отдельная статья слишком коротка, чтобы объяснить все, что нужно знать о такой сложной теме.

дифракция объективаNIKON D7000 + 17-55 мм f / 2,8 @ 55 мм, ISO 100, 1/250, f / 5,6

9. Вывод

Учитывая все эти технические предостережения, дифракция может показаться необычной темой для обсуждения. Тем не менее, ее эффекты очевидны и значимы на ваших фотографиях, и их стоит иметь ввиду, пока вы снимаете. Особенно для пейзажных и архитектурных фотографов — или тех, кто хочет делать резкие снимки с большой глубиной резкости — важно понимать компромиссы, которые возникают при съемке на небольшой диафрагме.

Дифракция присутствует на всех ваших фотографиях, и, если вы не будете осторожны, она может лишить резкости ваши любиме изображения. Однако, как только вы увидите ее эффекты на практике, дифракция станет второй натурой.

Удачи!

Procanvas.ru - Печать фотографий на холсте